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STATIONARY SOLUTION OF THE EQUATIONS OF

MICROCONVECTION IN A VERTICAL LAYER

UDC 532.517.013.4:536.252V. B. Bekezhanova

The stationary problem of convection in liquids is considered using the model of microconvection de-
veloped by V. V. Pukhnachev. Velocity profiles for boundary conditions of different classes are con-
structed. The solutions of the problem under study and the classical problem based on the Oberbeck–
Boussinesq model are compared.

System of the Equations of Microconvection. Pukhnachev [1] developed a model of microconvection
in which the temperature dependence of density has the form

ρ = ρ0(1 + βΘ)−1 (1)

(ρ0 and β are the positive constants). The mathematical formulation of the model is as follows:

divw = 0; (2)

wt +w · ∇w + βχ(∇Θ · ∇w −∇w · ∇Θ) + β2χ2(∆Θ∇Θ−∇|∇Θ|2/2) = (1 + βΘ)(−∇q + ν∆w) + g; (3)

Θt +w · ∇Θ + βχ|∇Θ|2 = (1 + βΘ)χ∆Θ, (4)

where w = v − βχ∇Θ and q = ρ−1
0 (p − λ divv) − β(ν − χ)χ∆Θ are unknown functions [v = (v1, v2, v3) is the

true velocity vector], β is the coefficient of thermal expansion, χ = k/(ρ0c) is the thermal diffusivity (the thermal
conductivity k and the specific heat of the liquid c are constant), p is the true liquid pressure, λ is the second
viscosity coefficient, ν = µ/ρ0 is the kinematic viscosity, and µ is the dynamic viscosity.

The functions w(x, t), q(x, t), and Θ(x, t) are solutions of system (2)–(4) with the following boundary
conditions on the rigid walls:

w + βχ∇Θ = 0, Θ = Θw(x, t) (5)

or

w + βχ∇Θ = 0,
∂Θ
∂n

+ δ(Θ−Θamb) = d. (6)

Here Θamb is the ambient temperature. The first condition in (5) is the attachment condition (v = 0) on the immov-
able rigid wall and the second condition specifies the wall temperature. The second condition in (6) characterizes
heat exchange with the ambient medium (heat flux is specified at δ = 0). In addition, for nonstationary motions it
is necessary to specify the initial conditions w = w0(x), divw0 = 0, and Θ = Θ0(x) at t = 0.

Remark 1. Pukhnachev [1] derived system (2)–(4) for determining the functions w, q, and Θ from the
exact equations of continuity, momentum, and energy. In [2], he showed that the classical Oberbeck–Boussinesq
approximation is inadequate for describing thermal gravitational convection if the dimensionless parameter ε1 =
|g|a3/(νχ) (a is the characteristic linear dimension) is smaller than or equal to unity. For a given liquid, a small
value of the parameter ε1 can be ensured by the smallness of the gravitational acceleration g or the length scale a.
The solvability of problem (2)–(4) in the Hölder classes is established in [3].
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Remark 2. The momentum equation (3) can be written in different form. Indeed, ∇Θ · ∇w −∇w · ∇Θ =
∇Θ · ∇w−∇Θ · (∇w)∗ = rotw×∇Θ (asterisk denotes conjugation). Next, ∇|∇Θ|2/2 = ∇Θ · ∇(∇Θ), and, hence,
∆Θ∇Θ −∇|∇Θ|2/2 = [div (∇Θ)I − ∂(∇Θ)/∂x]∇Θ = div [∇Θ ⊗∇Θ − |∇Θ|2I], where I is a unit tensor and the
symbol “⊗ ” denotes a tensor product. With allowance for the above formulas, Eq. (3) is written as

wt +w · ∇w + βχ rotw ×∇Θ + β2χ2 div [∇Θ⊗∇Θ− |∇Θ|2I] = (1 + βΘ)(−∇q + ν∆w) + g,

which is more convenient for a priori estimates.
Solution of the Stationary Problem in the Case of a Special Temperature Distribution. Let us

choose a coordinate system so that g = (0,−g, 0) and assume that the liquid occupies the layer |x| < a and the
boundaries of the layer are solid surfaces with specified heat flux. If the value of the heat flux does not depend on z,
plane flows are possible in a vertical layer. They can develop if the initial velocity and temperature distributions
do not depend on z or the velocity component v3 = 0 at t = 0. Below, we consider only steady flows in the layer.

In the plane case, system (2)–(4) for steady flow (wt = 0 and Θt = 0) admits the operators ∂/∂y and ψ∂/∂q,
and this reflects its invariance with respect to transposition along the y axis and increase in q (analog of pressure)
by an arbitrary constant ψ. The invariant solutions of system (2)–(4) with respect to the operator ∂/∂y + ψ∂/∂q

are written as

w = (w1, w2, 0), w1(x) ≡ u, w2(x) ≡ v, Θ = Θ(x), q = (ϕ− g)y + r(x), (7)

where ϕ = ψ+g. In the equation for q, the term −gy corresponds to the hydrostatic constituent in the representation
of the true pressure p. Substitution of (7) into system (2)–(4) causes disintegration of the system into several
equations, which are solved subsequently with respect to the unknown functions u(x), v(x), Θ(x), and r(x) (ϕ =
const).

From the continuity equation (2) it follows that w1 = const and w2(x) is an arbitrary function. We assume
that u ≡ w1 = u0 = const and v ≡ w2 is an arbitrary function.

With allowance for (7), the energy equation (4) takes the form (u0 + βχΘx)Θx = (1 + βΘ)χΘxx. The last
second-order equation has a two-parameter family of stationary solutions

Θ(x) =
1
β

[ 1
c1
− 1 + c2 exp

(c1u0x

χ

)]
(c1 6= 0) (8)

and a singular solution

Θ0(x) = Θ̄− u0x/(βχ) (Θ̄ = const). (9)

According to (6), at δ = 0 the boundary condition on the walls (x = ±a) for solution (7) has the form
Θx = −u0/(βχ) ≡ d. The only parameter — the temperature field (9) — satisfies this condition at any constant Θ̄.

Projecting (3) onto the x axis, we obtain (1 + βΘ0)(−rx) = 0, i.e., r = r0 = const. The function q(x, y) is
determined with accuracy up to a constant, and, hence, we can assume that r0 ≡ 0. Projection of (3) onto the y
axis gives the equation

(u0 + βχΘ0x)vx = (1 + βΘ0)(νvxx − ϕ) + (1 + βΘ0)g − g = (1 + βΘ0)(νvxx − ϕ) + βΘ0g. (10)

According to (9), u0 + βχΘ0x = 0 and Eq. (10) reduces to(
1 + βΘ̄− u0x

χ

)
(νvxx − ϕ) + βΘ̄g − u0g

χ
x = 0. (11)

Equation (11) is an ordinary differential equation of second order, in which ϕ is an unknown constant. Three
conditions are required to solve this equation. Since ∇Θ = (Θ0x, 0), we have

v(x) = 0, x = ±a. (12)

To define v(x) uniquely, we should find the constant ϕ. Solution (7) describes approximately convection in
the central part of a finite closed cavity whose length larger than width 2a. The condition of zero mass flow of the
liquid through any cross section of the layer y = const is imposed on this solution:

a∫
−a

ρ(x)v2(x) dx = 0. (13)

Here v2(x) is the true velocity and ρ(x) is the density of the liquid. In solution (7), v2(x) = v(x). With allowance
for the equation of state (1), we obtain
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a∫
−a

v(x)
1 + βΘ0(x)

dx = 0. (14)

The general solution of Eq. (11) is written as

v =
1
ν

[
(ϕ− g)

x2

2
+ c1x+ c2 +

gχ2

u2
0

(
1 + βΘ̄− u0x

χ

)(
ln
(

1 + βΘ̄− u0x

χ

)
− 1
)]

(15)

with the arbitrary constants c1 and c2 determined from (12):

c1 = − gχ2

2au2
0

(
f1 ln f1 − f2 ln f2 + 2

u0a

χ

)
,

(16)

c2 =
g − ϕ

2
a2 − gχ2

2u2
0

(f1 ln f1 + f2 ln f2 − 2(1 + βΘ̄)).

Here f1 = 1 + βΘ̄− u0a/χ and f2 = 1 + βΘ̄ + u0a/χ.
Substituting (15) into (14) and taking into account (16), we find

ϕ = g
{

1−
[ χ

2u0a
(ln f2 − ln f1)

(
f1 ln f1 + f2 ln f2 +

χ

u0a
(1 + βΘ̄)(f1 ln f1 − f2 ln f2)

)
+ 2
]

×
[
1 + βΘ̄ + (ln f2 − ln f1)

(u0a

2χ
− χ

2u0a
(1 + βΘ̄)2

)]−1}
.

Let us compare the solution obtained to the solution of the stationary problem in the Oberbeck–Boussinesq
approximation. The temperature fields in both solutions coincide; moreover, the horizontal velocity component is
equal to zero in both the classical approximation and the new solution. However, their vertical components differ:
in the Oberbeck–Boussinesq model, this component has the form

v = − gu0

6νχ
x(a2 − x2). (17)

To compare formulas (15) and (17), we write them in dimensionless form. For this, we choose the charac-
teristic linear dimension x = ηa and introduce the nondimensional parameters γ = u0a/χ and ε = βΘ̄. Converting
to the nondimensional variable, we obtain

v = − gu0

6νχ
a3η(1− η2).

Here the coefficient gu0a
3/(6νχ) is in centimeters per second. Dividing v by this coefficient and denoting the

resulting expression by vb, we finally have

vb = − 6νχ
gu0a3

v = η − η3. (18)

In the new model, we denote the velocity by vn. Hence, in accordance with (15), we have

vn = − ν

ga2
v =

p1(ε, γ)
4γp2(ε, γ)

η2 − p3(ε, γ)
2γ2

η +
p1(ε, γ)

4γp2(ε, γ)
− p4(ε, γ)

2γ2
+

1 + ε− γη
γ2

(ln (1 + ε− γη)− 1), (19)

where

p1(ε, γ) = (ln f∗2 − ln f∗1 )
[
f∗1 ln f∗1 + f∗2 ln f∗2 +

1 + ε

γ
(f∗1 ln f∗1 − f∗2 ln f∗2 )

]
+ 4γ;

p2(ε, γ) = 1 + ε+ (ln f∗2 − ln f∗1 )
(γ

2
− 1

2γ
(1 + ε)2

)
;

p3(ε, γ) = f∗1 ln f∗1 − f∗2 ln f∗2 + 2γ; p4(ε, γ) = f∗1 ln f∗1 + f∗2 ln f∗2 − 2(1 + ε).

The constants f∗1 = 1 + ε− γ and f∗2 = 1 + ε+ γ correspond to f1 and f2, respectively.
Comparison of Eq. (18) and Eq. (19) shows that the function vn is not an uneven function, in contrast to

the vertical velocity distribution for a steady stratified convective flow in a vertical layer, which is an odd function,
according to the classical model of convection. Velocity profiles are shown in Fig. 1, where curve 1 is a profile of
the velocity vb = v in the classical model and curves 2–5 are profiles of the velocity vn = v · 102 for the new model
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Fig. 1 Fig. 2

[ε = 0.1 and γ = 0.1 (2), ε = 0.1 and γ = 0.5 (3), ε = 0.01 and γ = 0.1 (4), and ε = 0.01 and γ = 0.5 (5)]. It is
evident that with increase in wall temperature difference, the value of vn(0) grows, and the maximum value vmax

n

is shifted toward the heated wall.
Remark 3. Pukhnachev [2] studied motion in a vertical slit [for solution (9) and its nonstationary variant];

boundary conditions were taken in the form (6). However, in [2], some inaccuracies are made in the formulas of
temperature, and, hence, velocity, and explicit formulas of velocity necessary for stability analysis of this flow are
lacking.

Analysis of the Stationary Solution at Specified Wall Temperature. Let us consider the case
where boundary conditions are taken in the form (5), i.e., the temperatures θ1 and θ2 are specified on the walls
x = ±a. According to the second conditions of (5), we have Θ|x=−a = θ1 and Θ|x=a = θ2. From (9), we obtain
θ1 = Θ̄+u0a/(βχ) and θ2 = Θ̄−u0a/(βχ). Thus, the singular solution (9) satisfies these conditions if the constants
u0 and Θ̄ depend on θ1 and θ2 as follows:

Θ̄ = (θ1 + θ2)/2, u0 = (θ1 − θ2)βχ/(2a).

In this case, the density is positive (βΘ̄ > −1) and Θ > 0 in the layer |x| < a.
For stationary solutions of the form (8), the following conditions must be satisfied on the walls:

1
β

[ 1
c1
− 1 + c2 exp

(
− c1u0a

χ

)]
= θ1,

1
β

[ 1
c1
− 1 + c2 exp

(c1u0a

χ

)]
= θ2. (20)

Subtracting the first of Eqs. (20) from the second, we obtain
c2
β

=
θ2 − θ1

exp (µ)− exp (−µ)
, (21)

where µ = c1u0a/χ.
We consider the following possible variants.
1. If θ1 = θ2, then c2 = 0 and c1 = 1/(1 + βθ1), i.e., the layer temperature is constant.
2. Let θ1 6= θ2. Substituting Eq. (21) into the first of Eqs. (20) and replacing ω = βχ(θ2 − θ1)/(u0a) and

σ = (1 + βθ1)χ/(u0a), we obtain the equation
1
µ

+
ω

exp (2µ)− 1
= σ. (22)

We note that σ > 0 (assuming u0 > 0). Let us determine whether solutions of Eq. (22) exist. Let f(µ) =
1/µ+ ω/(exp (2µ)− 1). Then, the derivative of this function has the form

f ′(µ) = − 1
µ2
− 2ω exp (2µ)

(exp (2µ)− 1)2
. (23)

2′. At ω > 0 (θ2 > θ1), the function f(µ) decreases monotonically [f ′(µ) < 0] in the domain of definition.
Therefore, there is a unique solution f(µ1) = σ and µ1 > 0 (Fig. 2), i.e., there are unique constants

c1 =
χ

u0a
µ1 > 0, c2 =

2β(θ2 − θ1)
sinhµ1

. (24)
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Fig. 3 Fig. 4

Let ω < 0. For µ→ 0, we have f(µ) ≈ (1/µ)[1+ω/2−ωµ/2], and, hence, the cases 1+ω/2 = 0, −2 < ω < 0,
and ω < −2 are to be considered.

3. Let 1 + ω/2 = 0, i.e., ω = −2. Then, f(+∞) = 0, f(−∞) = 2, and f → 1 as µ → ±0. According to
(23), we have derivative f ′(µ) = −1/µ2 + 4 exp (2µ)/(exp (2µ)− 1)2 at ω = −2. Let us determine whether f(µ) has
points of local extremum. It can be shown that f ′(µ∗) = 0 if and only if the equality |sinhµ∗| = |µ∗| is satisfied.
The latter can be satisfied only for µ∗ = 0, but in this case, f(0) = 1 at the point µ = 0. The derivative f ′(µ) 6 0
[f ′(µ) = 0 only for µ = 0], and hence, the function f(µ) decreases over the entire axis. Therefore, for ω = −2,
the unique solution of Eq. (22) is µ1, and it exists only for 0 < σ < 2. This means that the uniquely determined
constants c1 and c2 exist for the specified values of σ (Fig. 3).

4. Let 1 + ω/2 > 0, i.e., ω > −2. Then, f(µ) ∼ (1 + ω/2)/µ. The function f(µ) has a discontinuity at the
point µ = 0 and f(±0) = ±∞. If f ′(µ∗) = 0, the following cases are possible:

(a) −2 < ω < 0;
(b) ω > 0 (this case reduces to the variant 2′ ).
In the case (a), we have −ω = |ω|. We consider the equation f ′(µ) = 0, i.e.,

f ′(µ) = − 1
µ2

+
|ω|

2 sinh2 µ
= 0. (25)

The derivative is equal to zero only for sinh2 µ∗ = |ω|µ2
∗/2 (µ∗ 6= 0). We note that if µ is a solution of Eq. (25), −µ

is also a solution of (25). Hence, we assume that µ∗ > 0. Then, sinhµ∗ =
√
|ω|/2µ∗. It is easy to show that Eq.

(25) has a solution only for |ω| > 2, and since in this case, −2 < ω < 0, the last equation has no solutions. Thus,
the derivative f ′(µ) conserves sign in the domain [f ′(µ) < 0], and the function f(µ) decreases.

If 0 < σ < −ω, Eq. (22) has two solutions: µ1 > 0 and µ2 < 0. Thus, there are two pairs of constants:
(c11, c

1
2) and (c21, c

2
2). If σ > −ω, Eq. (22) has one solution (Fig. 4).

5. Let 1 +ω/2 < 0, i.e., ω < −2 and −ω = |ω|. The function f(µ) ∼ (1 +ω/2)/µ, while for µ→ 0, according
to the definition of the function, f(+0)→ −∞ and f(−0)→ +∞. It is easy to show that solutions of the equation

f ′(µ) =
1

µ2 sinh2 µ

[ |ω|
2
µ2 − sinh2 µ

]
= 0

are µ∗ > 0 and −µ∗ if the inequality |ω| > 2 is satisfied. Thus, f(−µ∗) = −1/µ∗− |ω|(exp (−2µ∗)− 1) and f(µ∗) =
ω(exp(2µ∗)−1)+1/µ∗. Generally speaking, for f(−µ∗) < f(µ∗), Eq. (22) has four solutions if f(−µ∗) < σ < f(µ∗).
Let us show that f(µ∗) < f(−µ∗). In other words, we need to show that 2/µ∗ < |ω|cothµ∗. The last inequality is
equivalent to tanhµ∗ < |ω|µ∗/2 (µ∗ > 0). To verify this inequality, we consider the function h(µ) = tanhµ−|ω|µ/2.
We have h(0) = 0 and h′(µ) = 1/cosh2 µ− |ω|/2. Let us determine the sign of the derivative at the point µ = 0. It
is obvious that h′(0) = 1− |ω|/2 < 0. Since coshµ > 1, the condition h′(µ) < 0 is satisfied, i.e., the function h(µ)
decreases. Hence, h(µ) < 0 for µ > 0, i.e., tanhµ∗ < |ω|µ∗/2 or f(µ∗) < f(−µ∗). Thus, if f(µ∗) < σ < f(−µ∗),
Eq. (22) is not solvable. If f(−µ∗) < σ < −ω or 0 < σ < f(µ∗), Eq. (22) has two solutions, and if σ = f(µ∗),
σ = f(−µ∗), or σ > −ω, it has a unique solution (Fig. 5).
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Fig. 5

We now verify that the conditions leading to uniqueness of the solution of Eq. (22) are satisfied. For all
cases described above, the inequality σ < −ω must be valid

(1 + βθ1)
χ

u0a
< −βχ(θ2 − θ1)

u0a
,

whence we obtain θ2 < 0. Thus, none of the conditions under which Eq. (22) can have two solutions is satisfied.
Consequently, for any values of θ1 and θ2, Eq. (22) has a unique solution. The unique values of c1 and c2 are
determined from (24).

Taking Θ(x) in the form (8) with the specified c1 and c2, we project (3) onto the y axis. As a result, we
obtain the following equation for determining the vertical component of the velocity v:

(1/c1 + c2 exp (kx))νvxx − c1c2u0 exp (kx)vx = f(x), (26)

where k = c1u0/χ and f(x) = ϕ(1/c1 + c2 exp (kx))− g(1/c1 − 1 + c2 exp (kx)).
After substitution z = 1 + c1c2 exp (kx), the general solution of Eq. (26) has the form

v =

z∫
h1

zα

z − 1

[ϕ− g
νk2

∫
dz

zα(z − 1)
+
gc1
νk2

∫
dz

zα+1(z − 1)
+D1

]
dz +D2, (27)

where D1 and D2 are constants, h1 = 1 + c1c2 exp (−ak), and α = χ/ν ≡ 1/Pr (Pr is the Prandtl number). The
constant ϕ is determined from (13):

ϕ = g(1− c1F1)−D1νk
2F2.

Here

F1 =

h2∫
h1

1
z

z∫
h1

σα

σ − 1

σ∫
h1

dτ

τα+1(τ − 1)
dσ dz

( h2∫
h1

1
z

z∫
h1

σα

σ − 1

σ∫
h1

dτ

τα(τ − 1)
dσ dz

)−1

;

F2 =

h2∫
h1

1
z

z∫
h1

σα

σ − 1
dσ dz

( h2∫
h1

1
z

z∫
h1

σα

σ − 1

σ∫
h1

dτ

τα(τ − 1)
dσ dz

)−1

.

The constants of integration D1 and D2 are determined from the condition of attachment on a stationary solid wall:

D1 =

(
gc1F1

νk2

h2∫
h1

zα

z − 1

z∫
h1

dσ

σα(σ − 1)
dz − gc1

νk2

h2∫
h1

zα

z − 1

z∫
h1

dσ

σα+1(σ − 1)
dz

)

×

( h2∫
h1

zα

z − 1
dz − F2

h2∫
h1

zα

z − 1

z∫
h1

dσ

σα(σ − 1)
dz

)−1

, D2 = 0.

Here h2 = 1 + c1c2 exp (ak).
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Fig. 6

To compare the solution obtained for the vertical component with the stationary problem in the classical
formulation, we introduce the dimensionless parameter γ1 = ak and, substituting z = 1 + c1c2 exp (γ1η), write
Eq. (27) in dimensionless form

vn =
νk2

g
v(η) (−1 6 η 6 1), (28)

where

v(η) = −(c1F1 +D∗1F2)γ2
1

η∫
−1

(1 + c1c2 exp (γ1η))α
∫

dσ

(1 + c1c2 exp (γ1σ))α
dη

+ c1γ
2
1

η∫
−1

(1 + c1c2 exp (γ1η))α
∫

dσ

(1 + c1c2 exp (γ1σ))α+1
dη +D∗1 ;

D∗1 =

(
c1F1γ

2
1

1∫
−1

(1 + c1c2 exp (γ1η))α
η∫
−1

dσ

(1 + c1c2 exp (γ1σ))α
dη

− c1γ2
1

1∫
−1

(1 + c1c2 exp (γ1η))α
η∫
−1

dσ

(1 + c1c2 exp (γ1σ))α+1
dη

)(
γ1

1∫
−1

(1 + c1c2 exp (γ1η))α dη

− F2γ
2
1

1∫
−1

(1 + c1c2 exp (γ1η))α
η∫
−1

dσ

(1 + c1c2 exp (γ1σ))α
dη

)−1

.

Velocity profiles are shown in Fig. 6, where curve 1 is a profile of the velocity vb = v in the classical model
and the curves 2–7 are profiles of the velocity vn = v · 103 in the new model for the temperature differences
∆Θ = 20 (2), 50 (3), 100 (4), 20 (5), 50 (6), and 100◦C (7); the solid and dashed curves refer to a = 0.05 and
0.025 cm, respectively. Evidently, the maximum value of vmax

n increases with increase in ∆Θ; moreover, profile (28)
is characterized by a shift of the value of vmax

n toward the heated wall.
Calculations were performed for melted silicon at u0 = 1. The values obtained are as follows:

1) for a = 0.025 cm and ∆Θ = 20◦C,

c1=9.8869319587 · 10−1, c2= 6.0661456314 · 10−3,

ϕ=1.6856451012 · 10−1, D1=−1.5264918983 · 10−3;
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2) for a = 0.025 cm and ∆Θ = 50◦C,

c1=9.9084990874 · 10−1, c2= 1.5132327790 · 10−2,

ϕ=2.3299026165 · 10−1, D1=−7.4848618079 · 10−4;

3) for a = 0.025 cm and ∆Θ = 100◦C,

c1=9.9442304131 · 10−1, c2= 3.0155820364 · 10−2,

ϕ=3.3781464878 · 10−1, D1=−1.0261157689 · 10−4;

4) for a = 0.05 cm and ∆Θ = 20◦C,

c1=9.8793651585 · 10−1, c2= 3.0316983028 · 10−3,

ϕ=1.4714983037 · 10−1, D1=−5.3249522658 · 10−3;

5) for a = 0.05 cm and ∆Θ = 50◦C,

c1=9.8896436881 · 10−1, c2= 7.5713428516 · 10−3,

ϕ=1.8011127970 · 10−1, D1=−5.9644369079 · 10−3;

6) for a = 0.05 cm and ∆Θ = 100◦C,

c1=9.9067235398 · 10−1, c2= 1.5116493573 · 10−2,

ϕ=2.3418316643 · 10−1, D1=−3.1642287370 · 10−3.
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